Name
Current school \qquad

WELLINGTON

 COLLEGE
I3+ SCHOLARSHIP EXAMINATION 2023

SCIENCE

TIME ALLOWED: 45 minutes
TOTAL MARKS: 46, marks for each question are shown in brackets

- Read the questions carefully and answer in the spaces provided
- Calculators may be used
- A copy of the periodic table is provided at the back of the paper

QI. A plant was grown in a greenhouse and subjected to different light levels. The volume of carbon dioxide was measured at each different light intensity and the results recorded on the graph below.

(a) Using your biological knowledge, explain what is happening at points A and B.
A.
\qquad
\qquad
B. \qquad
\qquad
\qquad
(b) Using the graph paper below, sketch a graph of the rate of carbon dioxide usage by a plant through photosynthesis over the course of a 24 hour period. Label this line " P ".

(c) On the same graph, add a line to show the rate of carbon dioxide production by respiration over the same period. Label this line " R ".
(d) A farmer wanted to know if atmospheric carbon dioxide levels affected how much of his crop was eaten by insects.

Describe an investigation you could carry out to see if this is true.
Make sure it is a test that would give the farmer reliable results.
\qquad

Current school

Q2. Carbon dioxide is a colourless gas which can be found in our atmosphere.
(a) Circle the word(s) that best describe carbon dioxide.

Molecule Compound Atom Mixture

(b) Which diagram best represents carbon dioxide? Explain your answer.
(A)
(B)

(C)

\qquad
\qquad
\qquad

Dry ice is the solid form of carbon dioxide and has a sublimation point of $-78.5^{\circ} \mathrm{C}$.

Reference: https://longbeachice.com/7-practical-lesser--known-uses-dry-ice/
(c) Suggest the best way to store dry ice. Explain your answer.
\qquad
\qquad
\qquad
\qquad

Carbon dioxide can be produced when calcium carbonate reacts with hydrochloric acid. Below is the chemical equation for the reaction:
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(d) One of the products is carbon dioxide. Name the other two products.
\qquad
\qquad

A student can measure the rate of reaction for calcium carbonate and hydrochloric acid by collecting the carbon dioxide produced.
(e) They need to measure out $20 \mathrm{~cm}^{3}$ of hydrochloric acid. What would be the most suitable apparatus to do this?
\qquad

They set up the apparatus to collect the carbon dioxide in the following way:

Reference: AQA
(f) Identify the problem with the setup of the apparatus.
\qquad
\qquad
(g) The student measured the volume of $\mathrm{CO}_{2}\left(\mathrm{~cm}^{3}\right)$ produced every 30 seconds for 4 minutes. Construct a suitable results table for them to record their data.

The student can determine the mean rate of reaction using the following equation:

$$
\text { rate of reaction }=\frac{\text { Volume of gas formed }}{\text { time taken }}
$$

(h) Use the equation above and the results table to determine suitable units for the rate of reaction.
\qquad
\qquad

Q3. The dimensions of the greenhouse are shown below.

(a) Find the volume of the greenhouse.
(b) What is the mass of the air inside the greenhouse?

The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$
You may use the equation: density $=\frac{\text { mass }}{\text { Volume }}$
\qquad
Mass:
(c) Over the course of the day the greenhouse gets hotter. State and explain how the mass of the air in the greenhouse varies as the temperature rises if:
(i) The windows and door remain closed.
\qquad
\qquad
\qquad
(ii) The windows are open.
\qquad
\qquad
\qquad

Q4. At the beginning of Autumn leaves die and fall to the ground under the influence of gravity.

The graph plots the speed of a falling leaf during its first second of fall.

(a)
(i) Describe how the velocity of the leaf changes over the first second.
\qquad
\qquad
(ii) Explain why the velocity changes as shown in the graph.
\qquad
\qquad
\qquad
(b) Use the graph to estimate the acceleration of the leaf during the first 0.1 seconds.

You may use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

Answer: $\mathrm{m} / \mathrm{s}^{2}$
(c) Draw two further lines on the graph, to illustrate:
(i) The velocity- time behaviour for a leaf with the same mass but double the crosssectional area. Label this line A.
(ii) The velocity-time behaviour for a leaf with the same cross-sectional area but double the mass. Label this line B.
PERIODIC TABLE OF ELEMENT

$\begin{gathered} { }^{58} \\ \mathrm{Ce} \\ \text { Cenium } \end{gathered}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{gathered} 60 \\ \mathbf{N d} \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ \text { Pronestium } \end{gathered}$	$\begin{gathered} 62 \\ \substack{62 \\ \text { Smanaium }} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { Earpuium } \end{gathered}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ \text { candinunn } \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ \text { Tethicum } \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dyyprosium } \end{gathered}$	$\begin{aligned} & \hline 67 \\ & \mathbf{H o} \end{aligned}$ Holmium	$\begin{aligned} & \begin{array}{c} 68 \\ \text { Er } \\ \text { Edidium } \end{array} \end{aligned}$		$\begin{gathered} 70 \\ \mathbf{Y b} \end{gathered}$	$\begin{gathered} 7^{71} \\ \text { Lu } \\ \text { Luntcium } \end{gathered}$
90	91	92	93	94	95	96	97	${ }^{98}$	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
$\underset{\substack{\text { Tharium } \\ 232}}{ }$	$\underset{\substack{\text { Proxtioum } \\ 231}}{\text { and }}$	${ }_{\text {Uranium }}^{\text {238 }}$	${ }_{\text {Neferanium }}$	${ }_{\substack{\text { Puuanium } \\ 244}}$	$\underset{\substack{\text { Americium } \\ 243}}{\substack{\text { a }}}$	${ }_{247}{ }_{\text {cuium }}$		calisamum	234	$\underset{253}{\substack{\text { Fernium } \\ \hline}}$	${ }^{\text {Necdersen }}$	$\underset{\substack{\text { Natelium } \\ 254}}{ }$	257

